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Abstract—The aim of this project was to design and implement
different control strategies for balancing a robot on two wheels,
and to investigate how measurement noise affects the perfor-
mance. The problem can be formulated as balancing an inverted
pendulum, which is a standard nonlinear control problem. PID
and linear-quadratic control strategies were implemented and
compared to each other. In order to measure the angle of
the robot a gyroscope and an accelerometer were used, and
measurement noise was filtered using two different methods,
which we compared to each other: Kalman filtering and com-
plementary filtering. The control algorithms were implemented
first in Simulink and then in leJOS on a LEGO Mindstorms
EV3 microprocessor. Our findings suggest that an LQR manages
to balance the robot better than a PID controller does. As for
filtering, our findings suggest that a Kalman filter is the best
filter to use in order to reduce the drift from the gyroscope and
the noise from the accelerometer.

I. INTRODUCTION

This project aimed at balancing a two-wheeled LEGO
structure, shown in figure 1, similar to a Segway by keeping
it in the upright position. The control problem is that of an
inverted pendulum. Different control strategies for keeping
the robot upright and steering it have been implemented and
tested. Two common control methods have been compared:
optimal control through a linear-quadratic regulator (LQR),
and proportional-integral-derivative (PID) control.

II. EQUIPMENT AND MATERIALS

The robot was built using LEGO Mindstorms. The main
components of the robot are two wheels, a LEGO EV3 proces-
sor, two NXT motors, a gyroscope and an accelerometer. Other
LEGO pieces were used to construct the frame. The regulator
for the robot was implemented in Java using the Eclipse IDE.
The program was compiled on a computer connected to the
robot with a USB-cable. The robot structure is partly based
on blueprints found online [4].

III. THEORY

In this section theoretical backgrounds for the different
control theories are described.

A. Complementary filter

When dealing with multiple sensors with various flaws, a
complementary filter can be used to minimize these flaws.
The idea of a complementary filter is to combine filtered
signals from different sensors in such a way that the desirable
properties of each sensor are utilized. An example is to

Fig. 1. Lego model

combine an accelerometer and a gyroscope to measure an
angle: a gyroscope typically is inaccurate for low frequen-
cies, which causes measurement drift, and an accelerometer
typically has undesirable high frequency components, which
causes measurement noise. By numerically integrating the
gyroscope’s signal and passing it through a high-pass filter and
combining this signal with a low-pass filtered accelerometer
signal, an estimate of the angle can be retrieved. See figure 2.
This can easily be implemented using the update formula in
equation 1.
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angle = a · (angle + gyro · dt) + (1− a) · accel, (1)

where
a =

τ

τ + dt
,

where τ is the desired time constant and dt = 1
fs where fs

is the sampling frequency.

Fig. 2. Complementary filter

B. Kalman filter

A Kalman filter is an algorithm that can be used in order to
estimate unknown variables and reduce noise from measure-
ments. For a discrete-time state-space model on the form

xk+1 = Axk +Buk + vk (2)
yk = Cxk + ek, (3)

where E{vkvTj } = Qvδkj , E{ekeTj } = Qeδkj , and
E{vkeTj } = Qveδkj , the Kalman filter is constructed accord-
ing to equations 4-8: [2]

ŷk = Cx̂k (4)

Rk = Qe + CPkC
T (5)

Pk+1 = APkA
T +Qv −KkRkK

T
k (6)

Kk = (APkC
T +Qve)(Qe + CPkC

T )−1 (7)
x̂k+1 = Ax̂k +Buk +Kk(yk − ŷk). (8)

In the case of estimating the angle with measurements from
an accelerometer and a gyroscope, a simpler Kalman filter can
be implemented according to the following equations: [3]

x̂k|k−1 = Fx̂k−1|k−1 + Bθ̇k
Pk|k−1 = FPk|k−1FT + Qk

ŷk = zk −Hx̂k|k−1
Sk = HPk|k−1HT + R
Kt = Pk|k−1HTS−1k

x̂k|k = x̂k|k−1 + Kkŷk
Pk|k = (I−KkH)Pk|k−1, (9)

with

x̂k =

[
θ

θ̇b

]
, F =

[
1 −h
0 1

]
, B =

[
h
0

]
Qk =

[
Qθ 0
0 Qθ̇b

]
, H =

[
1 0

]
, R = var(ek), (10)

where θ is the angle, θ̇b the bias of the measurements from
the gyro, h the sample time, Q is process noise, and R
measurement noise. The noises are the parameters that can
be tuned. The initial P-matrix can be set to a 2x2 matrix with
zeros.

C. Linear-quadratic regulator

The LQR was used as the primary regulator. It is concerned
with operating a dynamic system at minimum cost and can be
described by a set of equations:

u(t) = −Lx̂(t) (11)
˙̂x(t) = Ax̂(t) +Bu(t) +K(y(t)− Cx̂(t)) (12)

0 = AP + PAT +NR1N
T

− (PCT +NR12)R−12 (PCT +NR12)T
(13)

K = (PCT +NR12)R−12 (14)

L = Q−12 BTS (15)

0 = ATS + SA+MTQ1M − SBQ−12 BTS (16)

The equations eventually yield a state feedback controller.

D. PID control

A PID controller finds the difference between the desired
reference signal and the actual system output signal and
thereafter calculates a control signal. Denoting the error as
e(t) the PID-controller on standard form can be written as:

u(t) = K

(
e(t) +

1

Ti

∫ t

0

e(t) dt+ Td
de(t)

dt

)
,

or, as a transfer function in the Laplace-domain (s-domain)

G(s) = K

(
1 +

1

Tis
+ Tds

)
,

where K, Ti and Td are tuning parameters for the controller.
Since the controller was implemented digitally a discrete-time
representation was needed. Using the backward Euler method
with sampling time Ts the following transfer function was
acquired:

H(z) = K

(
1 +

Ts
Ti

1

1− z−1
+
Td
Ts

(1− z−1)

)
Letting K1 = K, K2 = Ts/Ti and K3 = Td/Ts the

equation can be rearranged into:

H(z) =
K1(1− z−1) +K2 +K3(1− z−1)2

1− z−1

=
(K1 +K2 +K3) + (−K1 − 2K3)z−1 +K3z

−2

1− z−1
.
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Let Ka = K1+K2+K3, Kb = −K1−2K3 and Kc = K3,
yielding:

u[k] = u[k − 1] +Kae[k] +Kbe[k − 1] +Kce[k − 2],

which is a causal assignment that can be implemented in
computer code.

IV. MODELLING

The dynamics of a Segway, which the robot was based on,
can be described as follows:

Fig. 3. Segway dynamics [1]

{
m11θ̈w +m12θ̈ cos θ = τ +m12θ̇

2 sin θ

m12θ̈w cos θ +m22θ̈ = −τ +Gb sin θ
, (17)

with:

m11 = (m+M)r2 + Iw

m12 = mlr

m22 = ml2 + Ib

Gb = mgl, (18)

where M and m are the masses of the wheel and the body,
r the radius of the wheel, l the length from the wheel to the
centre of gravity, θw the rotational angle of the wheel, θ the
angle of the body, Iw and Ib the moment of inertia for the
wheel and the body respectively, and τ the applied torque on
the wheel, as seen in figure 3. [1]

A. First model

Introducing the states x1 = θ and x2 = θ̇ yields:{
ẋ1 = x2

ẋ2 = f(x1, x2, τ)
, (19)

where:

f(x1, x2, τ) =
m11Gb sin(x1)−m2

12 cos(x1) sin(x1)x22 −m11τ

m11m22 −m2
12 cos2(x1)

.

(20)
The system in equation 19 can be linearised around the point

(θ, θ̇) = (0, 0), giving the system:{
ẋ1 = x2

ẋ2 = m11Gb

m11m22−m2
12
x1 − m11

m11m22−m2
12
τ

. (21)

Finally by introducing N = m11

m11m22−m2
12

, the system can
be written in matrix form as{

ẋ = Ax+Bτ

y = Cx
, (22)

with:

A =

[
0 1

NGb 0

]
, B =

[
0
−N

]
, C =

[
0 1

]
. (23)

This model would later turn out to be insufficient and
another model with more states was tested.

B. Second model

From equation 17, the angular acceleration of the wheels
can be written as

θ̈w =
(m12 cos θ +m22)τ +m22m12θ̇

2 sin θ −m12Gb sin θ cos θ

m11m22 −m2
12 cos2 θ

.

(24)
Linearising this equation around (θ, θ̇) = (0, 0) gives

θ̈w =
−m12Gb

m11m22 −m2
12

θ +
m12 +m22

m11m22 −m2
12

τ. (25)

Using equation 25, the system from equation 22 can be
extended to include the wheel’s angle and angular velocity as
states. with the state vector x =

[
θ θw θ̇ θ̇w

]T
and by

introducing K = m11m22 −m2
12, the system become:

ẋ =


0 0 1 0
0 0 0 1

NGb 0 0 0
−m12Gb

K 0 0 0

x+


0
0
−N

m12+m22

K

 τ

y =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

x. (26)

V. CONTROL

In order to implement this on the real process, the system
has to be discretized. This can be done with zero-order hold
sampling. For the first model, the system becomes

x(tk + h) = Φhx(tk) + Γhu(tk)

y(tk) = Cx(tk), (27)
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where

Φh =

[
cosh(

√
NGbh) sinh(

√
NGbh)√
NGb√

NGb sinh(
√
NGbh) cosh(

√
NGbh)

]
, (28)

Γh =
[
− cosh(

√
NGbh)−1
Gb

−
√
N sinh(

√
NGbh)√

Gb

]T
, (29)

and h = 0.02 is the sample time. For the second model, the
matlab function c2d was used.

The linear systems can now be controlled using a LQR
(described above) or a PID controller.

VI. IMPLEMENTATION

A. Simulation

In order to test the control strategies and the different filters
before moving on to the real process, Simulink was used. Two
different models were created, one with a complimentary filter,
figure 5, and one with a Kalman filter, figure 5. Both used LQR
to control the system.

Fig. 4. Simulink model of the linearised and discrete system (with 4 states)
with a LQ controller and a complementary filter.

Fig. 5. Simulink model of the linearised and discrete system (with 4 states)
with a LQ controller and a Kalman filter to estimate the angle.

In figure 4, the angle is filtered using a complementary filter
with both the angle and the angular velocity as inputs. The
filter is based on figure 2, where both the integration and the
low-pass filter is included in the LowPass block. The system
is controlled using a LQR with parameters found from the

matlab function lqr. There is also a step disturbance on the
control signal and noise on the measured angle to represent a
bad sensor.

The model in figure 5 is very similar, but instead of a
complementary filter, there is a Kalman filter described by
equation 9 to estimate the angle.

B. Java

The program for the robot was written in Java and imple-
mented with the operating system leJOS, which is a Java based
operating system. leJOS VM supports most of the functionality
from the standard library such as real-time threads, synchro-
nization mechanisms, and it also includes some libraries for
the LEGO Mindstorms hardware. In figure 6 the structure for
the classes used for controlling the robot and communicating
with the computer are visualized. A conceptual description of
the blocks (Java classes) are described below:
• Main: Main method, starts all the required threads.
• ControlRobot: Depending on chosen control strategy, this

controller regulates the dynamics of the robot.
• Wifi: Used for communication between the robot and a

computer on the same LAN.
• LQR and PID classes: one class for each control strategy.

Stores the variables needed for the control strategy.

Fig. 6. UML diagram of the program structure

VII. METHOD

An LQR controller with feedback was tried with the states:

x = (θ, θ̇), (30)

where θ is the angle of the robot body and θ̇ is the angular
velocity of the body. However, after trial and error the robot
still did not manage to balance, so another model was made
with 4 states:

x = (θ, θw, θ̇, θ̇w), (31)

where the added states θw and θ̇w are the wheel angle and
the angular velocity of the wheel. Following a trial and error
approach by simulating the system in Simulink and then tuning
the parameters on the real process, new model parameters
were found that managed to balance the robot to a sufficient
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degree. With the robot now successfully balancing, using only
a gyroscope to measure the angular velocity and the angle by
numerical integration, and the wheels to measure the current
wheel angle and wheel angular velocity, an accelerometer
was added to calculate the angle using sensor fusion. A
complementary filter was implemented that mostly trusted the
value from the gyroscope due to the accelerometer value being
corrupted by noise. Secondly, to improve the measurements
from the gyroscope and accelerometer for the angle, a Kalman
filter was implemented according to equation 9. Simulations
were done in Simulink with the different filters and then tried
on the real robot. As comparison, a simple PID controller with
two states was implemented as well.

VIII. RESULTS

A. Simulink

In figures 7 and 9 the real angle and angular velocity are
shown using LQR with a complementary filter or a Kalman
filter. In figures 8 and 10, the real angle, measured angle and
filtered angle are shown for the different filters. The LQR
weights used in the plots are Q = diag(1000, 0.1, 5, 0.1) R =
2 and N = diag(0, 0, 0, 0) (Q contains weights on the states, R
on the input and N the combinations). This gives the LQR pa-
rameters:

[
−18.3341 −0.0459 −2.8688 −0.0619

]
. The

parameters for the Kalman filter are given in table II.

Fig. 7. Real angle and angular velocity using the complementary filter. There
is an initial angle of 0.1 Rad, a step disturbance with amplitude 5 at time 30
s, and noise with variance 0.001 on the measured angle.

Fig. 8. Real angle, measured angle and filtered angle with complementary
filter. There is an initial angle of 0.1 Rad, a step disturbance with amplitude
5 at time 30 s, and noise with variance 0.001 on the measured angle.

Fig. 9. Real angle and angular velocity using the Kalman filter. There is an
initial angle of 0.1 Rad, a step disturbance with amplitude 5 at time 30 s, and
noise with variance 0.001 on the measured angle.
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Fig. 10. Real angle, measured angle and filtered angle with Kalman filter.
There is an initial angle of 0.1 Rad, a step disturbance with amplitude 5 at
time 30 s, and noise with variance 0.001 on the measured angle.

B. The real system

In figure 11 the estimated angle from complementary filter,
gyroscope and accelerometer is shown on the actual robot
with an external force added to measure the performance of
the system. Figure 12 the estimated angle from Kalman filter,
gyroscope and accelerometer is shown on the actual robot with
an external force added to measure the performance of the
system. In table I the measured constants of the robot are
shown, table III shows our LQR constants for the robot and
in table II the Kalman constants are shown.

Fig. 11. LQR: Estimated angle from the Complementary filter, Gyroscope
and accelerometer at different times. An external force was introduced to the
system after 5 seconds

Fig. 12. LQR: Estimated angle from the Kalman filter, Gyroscope and
accelerometer at different times. An external force was introduced to the
system at around 2.5 seconds

Fig. 13. PID: Estimated angle from the complementary filter, Gyroscope
and accelerometer at different times. An external force was introduced to the
system at around 2.5 seconds

TABLE I
MEASURED CONSTANTS

m 0.554kg

M 0.060kg

r 0.04m

l 0.11m

g 9.82m/s2

Iw 9.6 · 10−5kg ·m2

Ib 0.0067kg ·m2

TABLE II
KALMAN VALUES

Rv 43

Qaccel 0.03

Qgyro 0.00000002
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TABLE III
LQR-VALUES

kθ 18.1696

kθw 0.08

kθ̇ 0.85

kθ̇w 0.083

TABLE IV
PID VALUES

Kp 19

Ki 1.82

Kd 24.5

IX. DISCUSSION

Based on figure 11, the complementary filter starts to
drift away from the actual value. This was expected since
the filter is based mostly on the values from the gyroscope
due to the variance of the accelerometer values, which can
be seen in equation 1. By using our LQR controller with
the complementary filter the robot managed to self balance.
However, due to the drift in the motors, the position of the
robot gets further away from the starting point. Using the
Kalman filter, this drift was removed, which can be seen
in figure 12. The values for the Kalman filter that were
used on the robot are shown in table II. A high value of
the measurement noise was chosen since the accelerometer
angle tends to be corrupted by noise and the angle from the
gyroscope drifts. The Q values show how much we trust the
sensor outputs (see section III-B for more details) compared
to the other, where a high value indicates that the sensor
was trusted less compared to the other sensor. Based on the
result from table II, the accelerometer was trusted less than
the gyroscope which worked for the system. The values from
table III are the results from trial and error to calculate the
Q matrix in section III-C which balanced the robot. With
the PID implementation the robot was successfully balanced.
However, if external force was added on the robot it was not
successful in reducing the disturbance resulting in the robot
oscillating and eventually tipping over, which can be seen in
figure 13.

Comparing the results from the different controllers,
they suggest that an LQR controller is better than the PID
to self balance a robot. However, it might be that the PID
is not properly tuned. It is also worth noting that the EV3
with leJOS had a limitation in the speed of the control
loop. The minimum time per loop was around 16 ms, and
it was not possible to go lower than that if the values from
the accelerometer and gyroscope were to be collected. It
is possible that a PID controller would work better with a
lower downtime per iteration. One could try doing the control

strategies in C or the EV3 language, which could help with
reducing the delay. Furthermore, it is possible that both
controllers could have worked better if 4 motors were used
instead of 2 so the robot could recover balance from steeper
angles.

As for the filters it looks like the Kalman filter performed
better than the complementary filter to estimate the angle. That
being said, the implementation has not taken care of the bias
offset from the gyroscope which might be what makes the
complementary filter follow the gyroscope so closely. So if
one takes care of the bias offset from the gyroscope and then
use the complementary filter the result might be closer to the
Kalman filter.
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