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1 Introduction

While common methods for adaptive control, both linear and nonlinear, aim
to drive the output of a process to a known set point or reference trajectory,
the goal of extremum-seeking control is to find a system input such that some
measure of the process output is held at an extremum point, i.e. a minimum
or a maximum. Different methods of achieving this goal have been studied
and developed over the last century, and today there exist a multitude of such
methods; some are discussed in [4] and [5]. In this paper we will investigate a
simple perturbation-based scheme for performance optimization of a nonlinear
dynamic plant. Under certain assumptions such a system can be shown to be
stable; a proof for this is given by Krstić and Wang in [1].

Consider the following system:

• An unknown nonlinear dynamical plant ẋ = f(x, u)

• An unknown measured performance function y = g(x)

• Plant state x ∈ Rn

• Plant input u ∈ R

• f : Rn × R→ Rn and g : Rn → R are both smooth

If we know a smooth state-feedback control law u = α(x, θ), θ ∈ R then the
equilibria of the closed-loop system ẋ = f(x, α(x, θ)) is parameterized by θ, i.e.
there is a θ which optimizes y.

Figure 1: A general extremum-seeking scheme.

The basic idea behind the scheme investigated in this paper is to perturb the
system with a slow periodic signal commonly chosen to be sinusoidal; by then
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observing and acting on the output of the performance function one can estimate
its gradient, which can then be used by the state regulator, commonly chosen to
be an integrator, to iteratively seek an extremum point. In Section 2 we will first
look at the case where we assume plant dynamics to be driven to stationarity
by a control law and thus view the reference-to-output map as a static map.
Thereafter we will briefly look at the case where the plant dynamics have not
been driven to stationary, and in Section 3 observe by simulations how it affects
performance with respect to a static performance function.

2 Theory

In this section we will develop an intuitive description of a standard perturbation-
based extremum-seeking control scheme. First, assume the reference-to-output
map to be static. The scheme passes the output of the performance function
through a high-pass filter and thereafter multiplies the result by the perturba-
tion signal in order to create a rough estimate of the gradient. In some cases
this signal is thereafter also passed through a low-pass filter, which may im-
prove the system slightly by for instance attenuating measurement noise. We
will however not consider such a low-pass filter in the investigated scheme, since
we aim to keep the analysis simple and merely provide an intuitive explanation
of the principle. For a more rigorous treatment of extremum-seeking control,
one may refer to [2, 3, 4] or any other literature on the subject.

Figure 2: An extremum-seeking scheme.

In our extremum-seeking control system we have as input to the plant the sum
of the estimated parameter θ̂ and a sinusoidal perturbation signal, i.e.

θ = θ̂ + a sin(ωt)
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where a and ω are design parameters. The amplitude a provides a trade-off
between speed of convergence and narrowness of region of attraction; a small
a increases the probability of getting stuck at a local extremum but decreases
the residual error at the extremum reached by the algorithm, while a large a
increases speed of convergence but also the residual error. The perturbation
frequency ω controls time scale separation of the parameter estimation process,
conducted by the state regulator, and the gradient estimation process performed
by the inclusion of a perturbation signal; a higher ω gives a cleaner gradient
estimate, but the plant may be sensitive to high-frequency oscillations in which
case a high ω is undesirable.

Since we assume the plant has reached steady-state we can view the plant as a
static map from θ to its output y, i.e.

y = g(θ) = g(θ̂ + a sin(ωt))

We now wish to informally show that an extremum-seeking scheme using gra-
dient estimation can be developed with only knowledge of θ and the output of
the plant. Let ∂x denote the (partial) differential operator with respect to x.
Since θ is only slowly time-varying due to the frequency of the perturbation
signal being chosen low we can approximate g at θ̂ using a first-degree Taylor
expansion fa(x) = f(a) + ∂xf(a)(x− a):

gθ̂(θ) = g(θ̂) + ∂θg(θ̂)(θ̂ + a sin(ωt)− θ̂)

= g(θ̂) + ∂θg(θ̂)a sin(ωt)

Here we have an expression where one term is an approximation of the gradient
of g, apart from a slowly time-varying sinusoidal factor. This is a positive result;
extracting the gradient by means of high-pass filtering the signal, which removes
the DC-component g(θ̂), means that we are one step closer to being able to use
the approximate gradient ∂θg(θ̂) to seek an extremum point of g.

Consider a high-pass filterH with a cutoff frequency ωh chosen such that ωh < ω
yet sufficiently large to remove the DC-component. Denoting the high-pass
filtered approximation gθ̂(θ) of g(θ) by ζ we have

ζ = H{gθ̂(θ)}

= H{g(θ̂) + ∂θg(θ̂)a sin(ωt)}

≈ ∂θg(θ̂)Aa sin(ωt+ ϕ)

where A and ϕ are due to the filter. Since ωh < ω, A and ϕ have the following
properties (proof omitted; however, the result can be seen by observing am-
plitude and phase diagrams of a general first-order high-pass filter, which we
assume is used):

(i) 1√
2
< A < 1

(ii) 0 < ϕ < π
4
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Multiplying ζ by the perturbation signal a sin(ωt) gives us the following expres-
sion:

ξ = a sin(ωt)ζ

= a sin(ωt)∂θg(θ̂)Aa sin(ωt+ ϕ)

= a2A sin(ωt) sin(ωt+ ϕ)∂θg(θ̂)

Given that ωh < ω it can be shown that the product sin(ωt) sin(ωt + ϕ) is
positive ”most of the time”; for h → ω+ the product is positive approximately
94% of the time and for ωh = ω/2 the product is positive approximately 99% of
the time (this can be seen instantly by observing the product’s graph).

In order to simplify the calculations and improve understanding of the method
we simplify the above expression by assuming that the product of sinusoids is
always positive and multiply this product with the constants a2A, giving us the
expression

S(t) = a2A sin(ωt) sin(ωt+ ϕ)

ξ = S(t) · ∂θg(θ̂), 0 / S(t) / 1

Hence ξ is equal to the estimated gradient of g at θ̂ except for the time-varying
factor S(t). This means that we can apply gradient-seeking in order to find
a θ̂ which maps to an extremum point of g. We can update θ̂ by means of
an integrator. Intuitively it is easy to see this if we consider a discrete-time
zero-order hold integrator

Iτ,k(z) =
τk

z − 1

where τ is the sampling time and k, the integrator gain, is positive if we are
seeking a maximum or negative if we are seeking a minimum; applying this
integrator to ξi (the value of ξ at iteration i) we get an update of θ̂ of the
form

θ̂ =
τk

z − 1
ξi ⇔ θ̂i+1 = θ̂i + τkξi.

or a corresponding expression for a continuous-time integrator Ik(s) = k
s . Since

τ > 0 and ξ ≥ 0 the sign of the τkξ term depends only on the sign of k, which
we said to be positive if we are seeking a maximum and negative if we are
seeking a minimum. As the term τkξ guides θ̂ toward an extremum point of g
the gradient ∂θg(θ̂) will eventually reach and oscillate around 0, which implies
that an extremum of y has been found (the osciallation is due to the sinusiodal
perturbation signal).
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In summary we have, for an integrator I,

g(θ) ≈ g(θ̂) + ∂θg(θ̂)a sin(ωt)

ζ ≈ ∂θg(θ̂)Aa sin(ωt+ ϕ)

ξ = a sin(ωt)ζ & 0

θ̂ = I{ξ}

θ = θ̂ + a sin(ωt)

3 Example and simulation results

In this section we will first investigate how the parameters of the extremum-
seeking controllers affects performance. For purposes of testing we will use the
performance function seen in figure 3 which has local minimum at g(−1) = 1
and global minimum at g(1) = −3.
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Figure 3: The performance function g(θ) = θ4 + θ3 − 2θ2 − 3θ.

First we look at the case where the reference-to-output map is static and thus
described only by g(θ), the function in figure 3. As design parameters of the
extremum-seeking controller we have perturbation amplitude a and frequency
ω, integrator gain k and high-pass filter cutoff frequency ωh. In figures 4–11 we
see simulations for different parameter values of a, ω and k. For all simulations
we use ωh = 1 as the high-pass filter cutoff frequency and θ = −1 as an initial
guess of θ (blue in the figures below).

Comparing figures 4–6 to figure 7 we see that a larger perturbation signal ampli-
tude a makes the algorithm converge faster. However, as evident by inspection
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of figures 8-11, we see that if a is too small the algorithm will not converge at
all, due to its inability to ”escape” the local minimum at g(−1) = 1.

A larger integrator gain k also decreases convergence time but causes a tran-
sient spike. The perturbation signal frequency ω only has a slight effect on
convergence time, a result which is due to the quality of the gradient estimate
obtained by varying ω.

Figure 4: a = 0.3, ω = 3, k = −1 Figure 5: a = 0.3, ω = 3, k = −5

Figure 6: a = 0.3, ω = 15, k = −1 Figure 7: a = 0.5, ω = 3, k = −1

Figure 8: a = 0.1, ω = 3, k = −1 Figure 9: a = 0.1, ω = 3, k = −5
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Figure 10: a = 0.1, ω = 10, k = −1 Figure 11: a = 0.1, ω = 10, k = −5

Next we consider a system where the map from reference to output is not static;
instead, θ is first passed through a dynamic system G, the output of which is
used as input to the performance function giving us y = g(G{θ}) as opposed to
just y = g(θ). Relating the new controller to the one in figure 2 we just consider
the control law to be u = θ.

We can, as an example, let G be described by the transfer function G(s) =
1/(τs+1) which makes it a low-pass filter with a cutoff frequency ωl = 1/τ . By
intuitive reasoning we conclude that too high a frequency of the perturbation
signal will make finding the global extremum slow or even impossible.

The above reasoning is easily confirmed by simulations, as seen in figure 12
and 13. The parameters used for simulation were τ = 0.1, a = 0.3, ωh = 1
and k = −1; figure 12 uses perturbation frequency ω = 3 and figure 13 uses
perturbation frequency ω = 15. We see that for ω = 3 the extremum-seeking
controller manages to find the minimum of y but for ω = 15 it does not due to
the low pass filter removing too much of the perturbation signal.

Figure 12: ω = 3 Figure 13: ω = 15
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4 Conclusion

Extremum-seeking control is a means of optimizing some measure of the output
of a process with respect to an input parameter that drives the system. There
exist a multitude of extremum-seeking control scheme, the perturbation-based
one being the focus of this report. The inclusion of a perturbation signal allows
one to estimate the gradient of the process output and, using an integrator,
update the input parameter such that the process output is driven toward an
extremum point. There are several design parameters such as perturbation
signal amplitude and frequency, filter cutoff frequencies and integrator gain,
each being a trade-off between different qualities within the system such as
convergence time, stability, transient behaviour and so on. Should the process
dynamics be difficult to efficiently stabilize with the control law, one has to take
additional care in choosing the frequency of the perturbation signal such that
the signal is not undesirable attenuated or amplified.
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